Stochastic Partial Differential Equations with Unbounded and Degenerate Coefficients
نویسنده
چکیده
Abstract. In this article, using DiPerna-Lions theory [1], we investigate linear second order stochastic partial differential equations with unbounded and degenerate non-smooth coefficients, and obtain several conditions for existence and uniqueness. Moreover, we also prove the L1integrability and a general maximal principle for generalized solutions of SPDEs. As applications, we study nonlinear filtering problem and also obtain the existence and uniqueness of generalized solutions for a degenerate nonlinear SPDE.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملOn the Solvability of Forward-backward Stochastic Differential Equations with Absorption Coefficients∗
The solvability of forward-backward stochastic differential equations with absorption coefficients is studied by the successive approximation method. The existence and uniqueness of an adapted solution are established for the equations which allow the diffusion in the forward stochastic differential equations to be degenerate. The authors also study their connection with partial differential eq...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009